Advertisements
Advertisements
प्रश्न
x (e2y − 1) dy + (x2 − 1) ey dx = 0
उत्तर
We have,
\[x\left( e^{2y} - 1 \right)dy + \left( x^2 - 1 \right) e^y dx = 0\]
\[ \Rightarrow x\left( e^{2y} - 1 \right)dy = \left( 1 - x^2 \right) e^y dx\]
\[ \Rightarrow \left( \frac{e^{2y} - 1}{e^y} \right)dy = \left( \frac{1 - x^2}{x} \right)dx\]
\[ \Rightarrow \left( e^y - e^{- y} \right)dy = \left( \frac{1}{x} - x \right)dx\]
Integrating both sides, we get
\[\int\left( e^y - e^{- y} \right)dy = \int\left( \frac{1}{x} - x \right)dx\]
\[ \Rightarrow e^y + e^{- y} = \log \left| x \right| - \frac{1}{2} x^2 + C\]
\[ \Rightarrow e^y + e^{- y} - \log \left| x \right| + \frac{1}{2} x^2 = C\]
APPEARS IN
संबंधित प्रश्न
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
If y = etan x+ (log x)tan x then find dy/dx
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`