Advertisements
Advertisements
प्रश्न
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
उत्तर
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is Zero; any particular solution of a differential equation has no arbitrary constant.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
If y = etan x+ (log x)tan x then find dy/dx
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of differential equation coty dx = xdy is ______.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.