मराठी

Form the Differential Equation of the Family of Circles in the Second Quadrant and Touching the Coordinate Axes. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

उत्तर

We know that (xa)2+(yb)2=r2 represents a circle with centre (ab) and radius r.​

Since the circle lies in the 2nd quadrant, and touches the coordinate axes, thus a < 0, b > 0 and |a| = |b| = r.

So, the equation becomes (x+a)2+(ya)2=a2  .....(1)

Differentiating this equation w.r.t. x, we get

`2(x+a)+2(y−a)dy/dx=0`

`⇒dy/dx=(−x+a)/(y−a)`

Putting `dy/dx=y',`  we get

`y'=(−x+a)/(y−a)`

`⇒yy'−ay'+x+a=0`

`⇒yy'+x=ay'−a`

`⇒a=(x+yy')/(y'−1)`

Substituting this value of a in (1), we get

`(x−(x+yy')/(y'−1))^2+(y−(x+yy')/(y'−1))^2=((x+yy')/(y'−1))^2`

`⇒(xy'−x−x−yy')^2+(yy'−y−x−yy')^2=(x+yy')^2`

`⇒[y'(x−y)−2x]^2+(x+y)^2=(x+yy')^2`

`⇒(y')^2(x^2−2xy+y^2)−4x^2y'+4xyy'+4x^2+x^2+2xy+y^2=x^2+2xyy'+y^2(y')^2`

`⇒(y')^2(x^2−2xy)+2xy'(−2x+y)+4x^2+2xy+y^2=0`

This is the required ​differential equation of the family of circles in the second quadrant and touching the coordinate axes.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 2 C

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The number of arbitrary constants in the general solution of differential equation of fourth order is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


x2 dy + (x2 − xy + y2) dx = 0


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the differential equation of all non-horizontal lines in a plane.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solution of differential equation xdy – ydx = 0 represents : ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×