मराठी

For the Following Differential Equation, Find the General Solution:- D Y D X = 1 − Cos X 1 + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}}\]

\[ \Rightarrow \frac{dy}{dx} = \tan^2 \frac{x}{2}\]

\[ \Rightarrow dy = \left( \tan^2 \frac{x}{2} \right)dx\]

Integrating both sides, we get

\[\int dy = \int\left( \tan^2 \frac{x}{2} \right)dx\]

\[ \Rightarrow \int dy = \int\left( \sec^2 \frac{x}{2} - 1 \right)dx\]

\[ \Rightarrow y = 2 \tan \frac{x}{2} - x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 64.1 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×