मराठी

The solution of the differential equation ydx + (x + xy)dy = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation ydx + (x + xy)dy = 0 is ______.

रिकाम्या जागा भरा

उत्तर

The solution of the differential equation ydx + (x + xy)dy = 0 is xy = ce–y.

Explanation:

The given differential equation is ydx + (x + xy)dy = 0

⇒ (x + xy)dy = – ydx 

⇒ x(1 + y)dy = – ydx

⇒ `(1 + y)/y  "d"y = - 1/x  "d"x`

Integrating both sides, we get

`int (1 + y)/y  "d"y = - int 1/x "d"x`

⇒ `int(1/y + 1)"d"y = -int 1/x "d"x`

⇒ log y + y = – log x + log c

⇒ log x + log y + log e y = log c

⇒ log(xy . ey) = log c

∴ xy = ce–y 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 76.(viii) | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×