मराठी

Solve the Following Differential Equation:- D Y D X + ( Sec X ) Y = Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} + \left( \sec x \right)y = \tan x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \sec x\]

\[Q = \tan x\]

Now,

\[I . F . = e^{\int\sec x dx} \]

\[ = e^{\log\left| \left( \sec x + \tan x \right) \right|} \]

\[ = \sec x + \tan x\]

So, the solution is given by

\[y \times I . F = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\left( \sec x + \tan x \right)\tan x + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\sec x \times \tan x dx + \int \tan^2 x dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \int\sec x \times \tan x dx + \int\left( \sec^2 x - 1 \right) dx + C\]

\[ \Rightarrow y\left( \sec x + \tan x \right) = \sec x + \tan x - x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 66.09 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


If y = etan x+ (log x)tan x then find dy/dx


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

cos (x + y) dy = dx


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


(x3 − 2y3) dx + 3x2 y dy = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of differential equation coty dx = xdy is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×