मराठी

The Solution of the Differential Equation D Y D X = 1 + X + Y 2 + X Y 2 , Y ( 0 ) = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is

पर्याय

  • \[y^2 = \exp\left( x + \frac{x^2}{2} \right) - 1\]

  • \[y^2 = 1 + C \exp\left( x + \frac{x^2}{2} \right)\]

  • y = tan (C + x + x2)

  • \[y = \tan\left( x + \frac{x^2}{2} \right)\]

MCQ

उत्तर

\[y = \tan\left( x + \frac{x^2}{2} \right)\]
 
We have,
\[\frac{dy}{dx} = 1 + x + y^2 + x y^2 \]
\[ \Rightarrow \frac{dy}{dx} = \left( x + 1 \right) + y^2 \left( x + 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( x + 1 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( x + 1 \right)dx\]
Integrating both sides, we get
\[\int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( x + 1 \right)dx\]
\[ \Rightarrow \tan^{- 1} y = \frac{x^2}{2} + x + C . . . . . \left( 1 \right)\]
Now,
\[y\left( 0 \right) = 0\]
\[ \therefore \tan^{- 1} 0 = \frac{0}{2} + 0 + C\]
\[ \Rightarrow C = 0\]
\[\text{Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[ \tan^{- 1} y = \frac{x^2}{2} + x\]
\[ \Rightarrow y = \tan\left( \frac{x^2}{2} + x \right)\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
MCQ | Q 16 | पृष्ठ १४०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Which of the following differential equations has `y = x` as one of its particular solution?


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×