Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} + 2y = \sin 3x\]
उत्तर
We have,
\[\frac{dy}{dx} + 2y = \sin 3x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 2\text{ and }Q = \sin 3x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int2 dx} \]
\[ = e^{2x} \]
\[\text{Multiplying both sides of (1) by }I.F. = e^{2x},\text{ we get}\]
\[ e^{2x} \left( \frac{dy}{dx} + 2y \right) = e^{2x} \sin 3x \]
\[ \Rightarrow e^{2x} \frac{dy}{dx} + 2 e^{2x} y = e^{2x} \sin 3x\]
Integrating both sides with respect to `x`, we get
\[y e^{2x} = \int e^{2x} \sin 3x dx + C\]
\[ \Rightarrow y e^{2x} = I + C . . . . . \left( 1 \right)\]
\[\text{Where, }I = \int e^{2x} \sin 3x dx . . . . . \left( 2 \right)\]
\[ \Rightarrow I = e^{2x} \int\sin 3x dx - \int\left[ \frac{d e^{2x}}{dx}\int\sin 3x dx \right]dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\int e^{2x} \cos 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ e^{2x} \int\cos 3x dx - \int\left( \frac{d e^{2x}}{dx}\int\cos 3x dx \right)dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2}{3}\left[ \frac{e^{2x} \sin 3x}{3} - \frac{2}{3}\int e^{2x} \sin 3x dx \right]\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}\int e^{2x} \sin 3x dx\]
\[ \Rightarrow I = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9} - \frac{4}{9}I ............\left[\text{Using (2)} \right]\]
\[ \Rightarrow \frac{13I}{9} = - \frac{e^{2x} \cos 3x}{3} + \frac{2 e^{2x} \sin 3x}{9}\]
\[ \Rightarrow I = \frac{9}{13}\left( \frac{2 e^{2x} \sin 3x}{9} - \frac{e^{2x} \cos 3x}{3} \right)\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) . . . . . \left( 3 \right)\]
From (1) and (3), we get
\[y e^{2x} = \frac{e^{2x}}{13}\left( 2 \sin 3x - 3 \cos 3x \right) + C\]
\[ \Rightarrow y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x} \]
\[\text{Hence, }y = \frac{3}{13}\left( \frac{2}{3}\sin 3x - \cos 3x \right) + C e^{- 2x}\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
The number of arbitrary constants in the general solution of differential equation of fourth order is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
(x3 − 2y3) dx + 3x2 y dy = 0
\[\frac{dy}{dx} + y = 4x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.