Advertisements
Advertisements
प्रश्न
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
उत्तर
Given: (x2 − yx2) dy + (y2 + x2y2) dx = 0
Dividing both the sides by
\[dx\], we get:
\[\left( x^2 - y x^2 \right)\frac{dy}{dx} + \left( y^2 + x^2 y^2 \right) = 0\]
\[\Rightarrow x^2 \left( 1 - y \right)\frac{dy}{dx} + y^2 \left( 1 + x^2 \right) = 0\]
\[ \Rightarrow - x^2 \left( 1 - y \right)\frac{dy}{dx} = y^2 \left( 1 + x^2 \right)\]
\[ \Rightarrow x^2 \left( y - 1 \right)\frac{dy}{dx} = y^2 \left( 1 + x^2 \right)\]
\[ \Rightarrow \frac{\left( y - 1 \right)}{y^2}dy = \frac{1 + x^2}{x^2}dx\]
Integration both the sides:
\[\int\frac{\left( y - 1 \right)}{y^2}dy = \int\frac{1 + x^2}{x^2}dx\]
\[\frac{1}{2}\int\frac{2y}{y^2}dy - \int\frac{1}{y^2}dy = \int\frac{1}{x^2}dx + \int1 . dx\]
\[\text { Put } y^2 = t\]
\[\text { Differentiating w . r . t }t , 2ydy = dt\]
\[ \Rightarrow \frac{1}{2}\int\frac{dt}{t} + \frac{1}{y} = - \frac{1}{x} + x\]
\[ \Rightarrow \frac{1}{2}\log\left| y^2 \right| + \frac{1}{y} = - \frac{1}{x} + x + C\]
Given: y=1, x=1
\[ \Rightarrow \frac{1}{2}\log\left| 1 \right| + 1 = - 1 + 1 + C\]
\[ \Rightarrow C = 1\]
\[\Rightarrow \frac{1}{2}\log\left| y^2 \right| + \frac{1}{y} = - \frac{1}{x} + x + 1\] is the required solution.
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[\frac{dy}{dx} + y = 4x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of differential equation coty dx = xdy is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.