मराठी

The solution of the differential equation dddydx+2xy1+x2=1(1+x2)2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.

पर्याय

  • y(1 + x2) = c + tan–1x

  • `y/(1 + x^2) = "c" + tan^-1x`

  • y log(1 + x2) = c + tan–1x

  • y(1 + x2) = c + sin–1x

MCQ
रिकाम्या जागा भरा

उत्तर

The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is y(1 + x2) = c + tan–1x.

Explanation:

The given differential equation is `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2`

Since, it is a linear differential equation

P = `(2x)/(1 + x^2)` and Q = `1/(1 + x^2)^2`

Integrating factor I.F. = `"e"^(int Pdx)`

= `"e"^(int (2x)/(1 + x^2) "d"x)`

= `"e"^(log(1 + x^2))`

= `(1 + x^2)`

∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F".  "d"x + "c"`

⇒ `y(1 + x^2) = int 1/(1 + x^2)^2 xx (1 + x^2)"d"x + "c"`

⇒ `y(1 + x^2) = int 1/((1 + x^2)) "d"x + "c"`

⇒ `y(1 + x^2) = tan^-1x + "c"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 75 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×