Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
उत्तर
We have,
\[x dy = \left( 2 x^2 + 1 \right)dx\]
\[ \Rightarrow dy = \left( \frac{2 x^2 + 1}{x} \right)dx\]
\[ \Rightarrow dy = \left( 2x + \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( 2x + \frac{1}{x} \right)dx\]
\[ \Rightarrow y = x^2 + \log \left| x \right| + C . . . . . . . . . . \left( 1 \right)\]
Now the given curve passes through (1, 1)
Therefore, when x = 1, y = 1\]
\[ \therefore 1 = 1 + 0 + C\]
\[ \Rightarrow C = 0\]
Putting the value of `C` in (1), we get
\[y = x^2 + \log\left| x \right|\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Solve the differential equation `dy/dx -y =e^x`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.