Advertisements
Advertisements
प्रश्न
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
उत्तर
Differential equations
`dy/dx + (y^2 + y + 1)/(x^2 + x + 1)` = 0
or `dy/(y^2 + y + 1) + dx/(x^2 + x + 1) = 0`
and `dy/(y^2 + y + 1/4 + 3/4) + dx/(x^1 + x + 1/4 + 3/4) = 0`
or `dy/((y + 1/2)^2 + 3/4) + dx/((x + 1/2)^2 + 3/4)` = 0
On integrating,
`int dy/((y + 1/2)^2 + 3/4) + int dx/((x + 1/2)^2 + 3/4)` = 0
⇒ `2/sqrt3 tan^-1 ((y + 1/2)/(sqrt3/2)) + 2/sqrt3 tan^-1 ((x + 1/2)/(sqrt3/2))` = C
⇒ `2/sqrt3 tan^-1 ((2y + 1)/sqrt3) + 2/sqrt3 tan^-1 ((2x + 1)/sqrt3)` = C
⇒`2/sqrt3 tan^-1 [((2y + 1)/sqrt3 + (2x + 1)/sqrt3)/(1 - (2y + 1)/sqrt3 xx (2x + 1)/sqrt3)]` = C
⇒ `2/sqrt3 tan^-1 [(sqrt3 (2x + 2y + 2))/(3 - (2y + 1)(2x + 1))]` = C
⇒ `tan^-1 [(sqrt3(2x + 2y + 2))/(2 - 2x - 2y - 4xy)] = sqrt3/2`C
`= tan^-1 sqrt3 A`
Where C = `2/sqrt3 tan^-1 (sqrt3 A)`
`=> (2sqrt3 (x + y + 1))/(2 (1 - x - y - 2xy)) = sqrt3A`
∴ The required solution is
x + y + 1 = A(1 – x – y – 2xy)
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.