Advertisements
Advertisements
प्रश्न
Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.
उत्तर
We have sin x cos y dx + cos x sin y dy = 0
⇒ `sin x/cos x dx + siny/cos y dy = 0`
Integrating, `- int (- sin x)/cos x dx - int (- sin y)/ cos y dy = ` constant
⇒ - log |cos x| - log |cos y| = - log |C|
⇒ - log |cos x cos y| = - log |C|
⇒ cos x cos y = C .....(1)
Since the curve passes through `(0, pi/4)`
∴ `cos 0 cos pi/4 = C`
⇒ `(1) (1/sqrt2) = C`
⇒ `C = 1/sqrt 2`
Putting `C = 1/sqrt 2` in (1)
Cos x cos y = `1/sqrt2`
⇒ `cos y = sec x/sqrt2`
Which is the required equation for the curve.
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx = (1 - cos x)/(1+cos x)`
For the differential equation, find the general solution:
`dy/dx = sqrt(4-y^2) (-2 < y < 2)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
`dy/dx = (1+x^2)(1+y^2)`
For the differential equation, find the general solution:
`x^5 dy/dx = - y^5`
For the differential equation, find the general solution:
`dy/dx = sin^(-1) x`
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation find a particular solution satisfying the given condition:
`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x; y = 1` When x = 0
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`cos (dx/dy) = a(a in R); y = 1` when x = 0
Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.
In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (loge 2 = 0.6931).
In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0
Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x = `pi/3`
Solve the differential equation `"dy"/"dx" = 1 + "x"^2 + "y"^2 +"x"^2"y"^2`, given that y = 1 when x = 0.
Fill in the blank:
The integrating factor of the differential equation `dy/dx – y = x` is __________
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
y dx – x dy = −log x dx
Solve
`y log y dy/dx + x – log y = 0`
The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?
Solve
`y log y dx/ dy = log y – x`
Find the solution of `"dy"/"dx"` = 2y–x.
Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.
Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
Solve the following differential equation
x2y dx – (x3 + y3)dy = 0
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.