मराठी

For the differential equation find a particular solution satisfying the given condition: cos(dxdy)=a(a∈R);y=1 when x = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation find a particular solution satisfying the given condition:

`cos (dx/dy) = a(a in R); y = 1` when x = 0

बेरीज

उत्तर

`dy/dx = cos^-1 a => dy = (cos^-1"a")` dx

On integrating

`int dy = int (cos^-1 a) dx`

`y = x  cos^-1 a + C`

In this equation y = 1 if x = 0 is put in,

1 = 0 + C ⇒ C = 1

Putting this value of C in equation (i)

`y = x  cos^-1 a + 1`

`(y - 1)/x = cos^-1 a`

`=> cos  (y - 1)/x = a`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.4 [पृष्ठ ३९६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.4 | Q 13 | पृष्ठ ३९६

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

`dy/dx + y = 1(y != 1)`


For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.


The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


The general solution of the differential equation `dy/dx = e^(x+y)` is ______.


Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Solve the equation for x: 

sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0 


Solve the differential equation `"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`, given that y = 1 when x = 0.


Verify y = log x + c is a solution of the differential equation

`x(d^2y)/dx^2 + dy/dx = 0`


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

`y log  y dy/dx + x  – log y = 0`


Solve

`y log y  dx/ dy = log y  – x`


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Find the solution of `"dy"/"dx"` = 2y–x.


Find the differential equation of all non-vertical lines in a plane.


Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.


Solve the following differential equation

x2y dx – (x3 + y3)dy = 0


The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×