Advertisements
Advertisements
प्रश्न
Find the solution of `"dy"/"dx"` = 2y–x.
उत्तर
The given differential equation is
`"dy"/"dx"` = 2y–x
⇒ `"dy"/"dx" = 2^y/2^x`
Separating the variables, we get
`"dy"/2^y = "dx"/2^x`
⇒ `2^-y "d"y = 2^-x "d"x`
Integrating both sides, we get
`int 2^-y "d"y = int 2^-x "d"x`
`(-2^-y)/log2 = (-2^-x)/log2 + "c"`
⇒ `-2^-y = -2^-x + "c" log 2`
⇒ `-2^-y + 2^-x = "c" log 2`
⇒ `2^-x - 2^-y` = k .....[Where c log 2 = k]
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx = (1 - cos x)/(1+cos x)`
For the differential equation, find the general solution:
`dy/dx = sqrt(4-y^2) (-2 < y < 2)`
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
`dy/dx = (1+x^2)(1+y^2)`
For the differential equation, find the general solution:
`dy/dx = sin^(-1) x`
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.
Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).
The general solution of the differential equation `dy/dx = e^(x+y)` is ______.
Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
`y log y dy/dx + x – log y = 0`
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.
Solve the differential equation `"dy"/"dx" + 1` = ex + y.
Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
A hostel has 100 students. On a certain day (consider it day zero) it was found that two students are infected with some virus. Assume that the rate at which the virus spreads is directly proportional to the product of the number of infected students and the number of non-infected students. If the number of infected students on 4th day is 30, then number of infected studetns on 8th day will be ______.