Advertisements
Advertisements
प्रश्न
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
उत्तर
We have,
`dy/dx = y tan x`
⇒ `dy/y = tan x dx` ....(1)
Integrating (1) both sides, we get
⇒ `int dy/y = int tan x dx`
⇒ log y = log |sec x| + C
When x = 0, y = 1
⇒ log 1 = log |sec 0| + C
⇒ 0 = log 1 + C
⇒ C = 0
∴ log y = log |sec x|
Hence, the particular solution is y = sec x.
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx = (1 - cos x)/(1+cos x)`
For the differential equation, find the general solution:
`dy/dx = sqrt(4-y^2) (-2 < y < 2)`
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
(ex + e–x) dy – (ex – e–x) dx = 0
For the differential equation, find the general solution:
`dy/dx = (1+x^2)(1+y^2)`
For the differential equation, find the general solution:
y log y dx - x dy = 0
For the differential equation, find the general solution:
`x^5 dy/dx = - y^5`
For the differential equation, find the general solution:
`dy/dx = sin^(-1) x`
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)` find the solution curve passing through the point (1, –1).
At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).
In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
The general solution of the differential equation `dy/dx = e^(x+y)` is ______.
Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.
Find the particular solution of the differential equation:
`y(1+logx) dx/dy - xlogx = 0`
when y = e2 and x = e
Solve the equation for x:
sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0
Solve the differential equation `"dy"/"dx" = 1 + "x"^2 + "y"^2 +"x"^2"y"^2`, given that y = 1 when x = 0.
Verify y = log x + c is a solution of the differential equation
`x(d^2y)/dx^2 + dy/dx = 0`
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
y dx – x dy = −log x dx
Solve
`y log y dy/dx + x – log y = 0`
Solve
`y log y dx/ dy = log y – x`
Find the solution of `"dy"/"dx"` = 2y–x.
Find the differential equation of all non-vertical lines in a plane.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
Which method of solving a differential equation can be used to solve `"dy"/"dx" = "k"(50 - "y")`?
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
Solve the following differential equation
x2y dx – (x3 + y3)dy = 0
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.