English

Find the solution of dydxdydx = 2y–x. - Mathematics

Advertisements
Advertisements

Question

Find the solution of `"dy"/"dx"` = 2y–x.

Sum

Solution

The given differential equation is

`"dy"/"dx"` = 2y–x 

⇒ `"dy"/"dx" = 2^y/2^x`

Separating the variables, we get

`"dy"/2^y = "dx"/2^x`

⇒ `2^-y "d"y = 2^-x "d"x`

Integrating both sides, we get

`int 2^-y "d"y = int 2^-x "d"x`

`(-2^-y)/log2 = (-2^-x)/log2 + "c"`

⇒ `-2^-y = -2^-x + "c" log 2`

⇒ `-2^-y + 2^-x = "c" log 2`

⇒ `2^-x - 2^-y` = k  .....[Where c log 2 = k]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 193]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 1 | Page 193

RELATED QUESTIONS

For the differential equation, find the general solution:

`dy/dx = (1 - cos x)/(1+cos x)`


For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

sec2 x tan y dx + sec2 y tan x dy = 0


For the differential equation, find the general solution:

`x^5  dy/dx = - y^5`


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


For the differential equation find a particular solution satisfying the given condition:

`cos (dx/dy) = a(a in R); y = 1` when x = 0


For the differential equation find a particular solution satisfying the given condition:

`dy/dx` = y tan x; y = 1 when x = 0


Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.


At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


The general solution of the differential equation `dy/dx = e^(x+y)` is ______.


Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Solve the differential equation `"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`, given that y = 1 when x = 0.


Verify y = log x + c is a solution of the differential equation

`x(d^2y)/dx^2 + dy/dx = 0`


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

y dx – x dy = −log x dx


The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?


Solve

`y log y  dx/ dy = log y  – x`


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×