Advertisements
Advertisements
प्रश्न
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
उत्तर
Given differential equation is (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0
⇒ `2y(1 + x^2)"d"y = -(1 + y^2) . tan^-1x . "d"x`
⇒ `(2y)/(1 + y^2) "d"y = (tan^-1x)/(1 + x^2) . "d"x`
Integrating both sides, we get
`int (2y)/(1 + y^2) "d"y = -int (tan^-1x)/(1 + x^2) . "d"x`
⇒ `log|1 + y^2| = - 1/2(tan^-1x)^2 + "c"`
⇒ `1/2 (tan^-1x)^2 + log|1 + y^2|` = c
Which is the required solution.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(x3 − 2y3) dx + 3x2 y dy = 0
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.