मराठी

Solve the Following Differential Equation:- D Y D X + 2 Y = Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} + 2y = \sin x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = 2 \]

\[Q = \sin x\]

Now,

\[I . F . = e^{2\int dx} = e^{2x} \]

Solution is given by,

\[y \times I . F . = \int\sin x \times I . F . dx + C\]

\[ \Rightarrow y e^{2x} = I + C . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = \sin x\int e^{2x} dx - \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{2}\int\cos x e^{2x} dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{2}\cos x\int e^{2x} dx + \frac{1}{2}\int\left[ \frac{d}{dx}\left( \cos x \right)\int e^{2x} dx \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{4}\cos x e^{2x} - \frac{1}{4}\int\left[ \sin x e^{2x} \right]dx\]

\[ \Rightarrow I = \frac{\sin x e^{2x}}{2} - \frac{1}{4}\cos x e^{2x} - \frac{1}{4}I ............\left[\text{Using (2)} \right]\]

\[ \Rightarrow I + \frac{1}{4}I = \frac{1}{2}\sin x e^{2x} - \frac{1}{4}\cos x e^{2x} \]

\[ \Rightarrow \frac{5}{4}I = \frac{1}{4}\left( 2\sin x e^{2x} - \cos x e^{2x} \right)\]

\[ \Rightarrow I = \frac{1}{5}\left( 2\sin x - \cos x \right) e^{2x} . . . . . \left( 3 \right)\]

Therefore from (1) and (3), we get

\[ \therefore y e^{2x} = \frac{1}{5}\left( 2\sin x - \cos x \right) e^{2x} + C\]

\[ \Rightarrow y = \frac{1}{5}\left( 2 \sin x - \cos x \right) + C e^{- 2x}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 66.06 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

\[\frac{dy}{dx} + 1 = e^{x + y}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×