हिंदी

For the Following Differential Equation, Find the General Solution:- D Y D X = 1 − Cos X 1 + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

योग

उत्तर

We have,

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}}\]

\[ \Rightarrow \frac{dy}{dx} = \tan^2 \frac{x}{2}\]

\[ \Rightarrow dy = \left( \tan^2 \frac{x}{2} \right)dx\]

Integrating both sides, we get

\[\int dy = \int\left( \tan^2 \frac{x}{2} \right)dx\]

\[ \Rightarrow \int dy = \int\left( \sec^2 \frac{x}{2} - 1 \right)dx\]

\[ \Rightarrow y = 2 \tan \frac{x}{2} - x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 64.1 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the differential equation representing the curve y = cx + c2.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


Which of the following differential equations has y = x as one of its particular solution?


\[\frac{dy}{dx} - y \tan x = e^x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + y = 4x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×