हिंदी

Verify that the Given Functions (Explicit Or Implicit) is a Solution of the Corresponding Differential Equation Y = Sqrt(A^2 - X^2 ) X in (-a,A) - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`

योग

उत्तर

We have, `y = sqrt (a^2 - x^2)`                      ...(i)

Differentiating (I) w.r.t. x, we get

`y' = (1xx (-2x))/(2sqrt(a^2 - x^2))`

⇒ `y' = (-x)/sqrt (a^2 - x^2)`

⇒ `y' = (-x)/y`             (Using (i))

⇒ yy' = -x

⇒ x + yy' = 0

∴ `y = sqrt (a^2 - x^2)` is a solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.2 [पृष्ठ ३८५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.2 | Q 10 | पृष्ठ ३८५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The number of arbitrary constants in the general solution of differential equation of fourth order is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×