हिंदी

Solve the Following Differential Equation:- Y D X + X Log Y X D Y − 2 X D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`

योग

उत्तर

We have,

\[y dx + x \log \left( \frac{y}{x} \right)dy - 2x dy = 0\]

\[ \Rightarrow x \log \left( \frac{y}{x} \right)dy - 2x dy = - y dx\]

\[ \Rightarrow \left[ \log \left( \frac{y}{x} \right) - 2 \right]x dy = - y dx\]

\[ \Rightarrow \frac{dy}{dx} = \frac{- y}{\left[ \log \left( \frac{y}{x} \right) - 2 \right]x}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{\frac{y}{x}}{2 - \log \left( \frac{y}{x} \right)} . . . . . . . . \left( 1 \right)\]

Clearly this is a homogenous equation,

Putting y = vx

\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ in (1) we get}\]

\[v + x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{2 - \log \left( v \right)} - v\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 2v + v \log \left( v \right)}{2 - \log \left( v \right)}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{- v + v \log \left( v \right)}{2 - \log \left( v \right)}\]

\[ \Rightarrow \frac{2 - \log \left( v \right)}{- v + v \log \left( v \right)}dv = \frac{1}{x}dx\]

\[ \Rightarrow \frac{\log \left( v \right) - 2}{v \log \left( v \right) - v}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{\log \left( v \right) - 1 - 1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{\log \left( v \right) - 1}{v \left[ \log \left( v \right) - 1 \right]}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]

\[ \Rightarrow \frac{1}{v}dv - \frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \frac{1}{x}dx\]

Integrating both sides we get

\[\int\frac{1}{v}dv - \int\frac{1}{v \left[ \log \left( v \right) - 1 \right]}dv = - \int\frac{1}{x}dx\]

\[ \Rightarrow \log \left| v \right| - I = - \log \left| x \right| - \log C . . . . . . . . \left( 2 \right)\]

Where,

\[I = \int\frac{1}{v \left[ \log \left| \left( v \right) \right| - 1 \right]}dv\]

Puting log v = t

\[\frac{1}{v}dv = dt\]

\[ \therefore I = \int\frac{1}{t - 1}dt\]

\[ \Rightarrow I = \log \left| t - 1 \right|\]

\[ \Rightarrow I = \log \left| \log \left| v \right| - 1 \right| . . . . . \left( 3 \right)\]

From (2) and (3) we get

\[\log \left| v \right| - \log \left| \log \left| v \right| - 1 \right| = - \log \left| x \right| - \log C\]

\[ \Rightarrow \log \left| \frac{v}{\log \left| v \right| - 1} \right| = - \log \left| Cx \right|\]

\[ \Rightarrow \frac{v}{\log \left| v \right| - 1} = \frac{1}{Cx}\]

\[ \Rightarrow \log \left| v \right| - 1 = vCx\]

\[ \Rightarrow \log \left| \frac{y}{x} \right| - 1 = Cy\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 66.03 | पृष्ठ १४७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]


(x2 + 1) dy + (2y − 1) dx = 0


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×