Advertisements
Advertisements
Question
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Solution
We know that (x−a)2+(y−b)2=r2 represents a circle with centre (a, b) and radius r.
Since the circle lies in the 2nd quadrant, and touches the coordinate axes, thus a < 0, b > 0 and |a| = |b| = r.
So, the equation becomes (x+a)2+(y−a)2=a2 .....(1)
Differentiating this equation w.r.t. x, we get
`2(x+a)+2(y−a)dy/dx=0`
`⇒dy/dx=(−x+a)/(y−a)`
Putting `dy/dx=y',` we get
`y'=(−x+a)/(y−a)`
`⇒yy'−ay'+x+a=0`
`⇒yy'+x=ay'−a`
`⇒a=(x+yy')/(y'−1)`
Substituting this value of a in (1), we get
`(x−(x+yy')/(y'−1))^2+(y−(x+yy')/(y'−1))^2=((x+yy')/(y'−1))^2`
`⇒(xy'−x−x−yy')^2+(yy'−y−x−yy')^2=(x+yy')^2`
`⇒[y'(x−y)−2x]^2+(x+y)^2=(x+yy')^2`
`⇒(y')^2(x^2−2xy+y^2)−4x^2y'+4xyy'+4x^2+x^2+2xy+y^2=x^2+2xyy'+y^2(y')^2`
`⇒(y')^2(x^2−2xy)+2xy'(−2x+y)+4x^2+2xy+y^2=0`
This is the required differential equation of the family of circles in the second quadrant and touching the coordinate axes.
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = e^x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
\[\frac{dy}{dx} + y = 4x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The differential equation for which y = acosx + bsinx is a solution, is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.