Advertisements
Advertisements
Question
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Solution
Given differential equation is `x (dy)/(dx) = y(logy - logx + 1)`
⇒ `(dy)/(dx) = y/x(log y/x + 1)`
Put y = vx
⇒ `(dy)/(dx) = v + x(dv)/(dx)`
⇒ `v + x (dv)/(dx) = v(logv + 1)`
⇒ `(dv)/(vlogv) = (dx)/x`
On integrating both sides, we get
`int (dx)/x = int(dx)/x`
⇒ log(logv) = logx + logC
⇒ log(logv) = logCx
⇒ log(y/x) = Cx
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.