English

Solve the Following Differential Equation:- X Log X D Y D X + Y = 2 X Log X - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]

Sum

Solution

We have,

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]

Dividing both sides by `x log x,` we get

\[\frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\frac{\log x}{x \log x}\]

\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x^2}\]

\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x^2}\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{1}{x \log x} \]

\[Q = \frac{2}{x^2}\]

Now,

\[I . F . = e^{\int P\ dx} \]

\[ = e^{\int\frac{1}{x \log x}dx} \]

\[ = e^{\log\left| \left( \log x \right) \right|} \]

\[ = \log x\]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\log x = 2\int\frac{1}{x^2} \times \log x dx + C\]

\[ \Rightarrow y\log x = I + C . . . . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = 2\log x\int\frac{1}{x^2} dx - 2\int\left[ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^2} dx \right]dx\]

\[ \Rightarrow I = \frac{- 2}{x}\log x + 2\int\left[ \frac{1}{x^2} \right]dx\]

\[ \Rightarrow I = \frac{- 2}{x}\log x - \frac{2}{x} . . . . . . . . \left( 2 \right)\]

From (1) and (2) we get

\[ \therefore y\log x = \frac{- 2}{x}\log x - \frac{2}{x} + C\]

\[ \Rightarrow y\log x = \frac{- 2}{x}\left( \log x + 1 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.11 | Page 147

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


tan–1x + tan–1y = c is the general solution of the differential equation ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×