English

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: x + y = tan–1y : y2 y′ + y2 + 1 = 0 - Mathematics

Advertisements
Advertisements

Question

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0

Sum

Solution

x + y = tan-1y

1 = y’ = `1/(1 + y^2)` (y’)

⇒ (1 + y') (1 + y2) = y’

⇒ 1 + y2 + y' + y2y' = y'

⇒  1 + y2 + y2y' = 0

Hence, the given function x + y = tan-1y is a solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.2 [Page 385]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.2 | Q 9 | Page 385

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find the differential equation of all non-horizontal lines in a plane.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×