English

The General Solution of a Differential Equation of the Type D X D Y + P 1 X = Q 1 is - Mathematics

Advertisements
Advertisements

Question

The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is

Options

  • \[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

  • \[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

  • \[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

  • \[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

MCQ

Solution

\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

 

We have,

\[\frac{dx}{dy} + P_1 x = Q_1\]

Comparing with the equation \[\frac{dx}{dy} + Px = Q\], we get

P = P1

Q = Q1

The general solution of the equation \[\frac{dx}{dy} + Px = Q\] is given by \[x e^{\int Pdy} = \int\left\{ Q e^{\int Pdy} \right\}dy + C\]       ...(1)

Putting the value of P and Q in (1), we get

\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 144]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 53 | Page 144

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The number of arbitrary constants in the particular solution of a differential equation of third order is


(x2 + 1) dy + (2y − 1) dx = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solution of differential equation xdy – ydx = 0 represents : ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Which of the following differential equations has `y = x` as one of its particular solution?


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×