Advertisements
Advertisements
Question
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Options
\[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
Solution
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
We have,
\[\frac{dx}{dy} + P_1 x = Q_1\]
Comparing with the equation \[\frac{dx}{dy} + Px = Q\], we get
P = P1
Q = Q1
The general solution of the equation \[\frac{dx}{dy} + Px = Q\] is given by \[x e^{\int Pdy} = \int\left\{ Q e^{\int Pdy} \right\}dy + C\] ...(1)
Putting the value of P and Q in (1), we get
\[x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C\]
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the particular solution of a differential equation of third order is
(x2 + 1) dy + (2y − 1) dx = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of differential equation xdy – ydx = 0 represents : ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.