Advertisements
Advertisements
Question
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Options
xy = C
x = Cy2
y = Cx
y = Cx2
Solution
y = Cx
We have,
\[\frac{y dx - x dy}{y} = 0\]
\[ \Rightarrow y dx = x dy\]
\[ \Rightarrow \frac{1}{y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \log y = \log x + D\]
\[ \Rightarrow \log y - \log x = \log C\]
\[ \Rightarrow \log\left( \frac{y}{x} \right) = \log C\]
\[ \Rightarrow \frac{y}{x} = C\]
\[ \Rightarrow y = Cx\]
APPEARS IN
RELATED QUESTIONS
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + y = 4x\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.