English

Find a Particular Solution of the Following Differential Equation:- ( 1 + X 2 ) D Y D X + 2 X Y = 1 1 + X 2 ; Y = 0 , When X = 1 - Mathematics

Advertisements
Advertisements

Question

Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]

Sum

Solution

We have,

\[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}\]

\[ \Rightarrow \frac{dy}{dx} + \frac{2x}{\left( 1 + x^2 \right)}y = \frac{1}{\left( 1 + x^2 \right)^2}\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{2x}{\left( 1 + x^2 \right)} \]

\[Q = \frac{1}{\left( 1 + x^2 \right)^2}\]

Now,

\[I . F . = e^{\int\frac{2x}{\left( 1 + x^2 \right)}dx} \]

\[ = e^{\log \left| 1 + x^2 \right|} \]

\[ = 1 + x^2 \]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \int\frac{1}{\left( 1 + x^2 \right)} dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \tan^{- 1} x + C . . . . . \left( 1 \right)\]

Now,

When x = 1, y = 0

\[ \therefore 0\left( 1 + 1 \right) = \tan^{- 1} 1 + C\]

\[ \Rightarrow C = - 1\]

\[ \Rightarrow C = - \frac{\pi}{4}\]

Putting the value of `C` in (1), we get

\[y\left( 1 + x^2 \right) = \tan^{- 1} x - \frac{\pi}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 67.1 | Page 147

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


cos (x + y) dy = dx


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×