English

Y = aemx+ be–mx satisfies which of the following differential equation? - Mathematics

Advertisements
Advertisements

Question

y = aemx+ be–mx satisfies which of the following differential equation?

Options

  • `("d"y)/("d"x) + "m"y` = 0

  • `("d"y)/("d"x) - "m"y` = 0

  • `("d"^2y)/("d"x^2) - "m"^2y` = 0

  • `("d"^2y)/("d"x^2) + "m"^2y` = 0

MCQ

Solution

`("d"^2y)/("d"x^2) - "m"^2y` = 0

Explanation:

The given equation is y = `"ae"^("m"x) + "be"^(-"m"x)`

On differentiation, we get `("d"y)/("d"x) = "a" . "me"^("m"x) - "b" . "m"e^(-"m"x)`

Again differentiating w.r.t., we have

`("d"^2y)/("d"x^2) = "am"^2 "e"^("m"x) + "bm"^2 "e"^(-"m"x)`

⇒ `("d"^2y)/("d"x^2) = "m"^2 ("ae"^("m"x) + "be"^(-"m"x))`

⇒ `("d"^2y)/("d"x^2) = "m"^2y`

⇒ `("d"^2y)/("d"x^2) - "m"^2y` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 198]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 56 | Page 198

RELATED QUESTIONS

Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

\[\frac{dy}{dx} - y \cot x = cosec\ x\]


(x2 + 1) dy + (2y − 1) dx = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


The solution of differential equation coty dx = xdy is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×