Advertisements
Advertisements
Question
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Solution
Consider the differential equation,
`log(dy/dx)=3x+4y`
Taking exponent on both the sides, we have
`e^log(dy/dx)=e^(3x+4y)`
`=>dy/dx=e^(3x+4y)`
`=>dy/dx=e^(3x).e^(4y)`
`=>dy/(e^(4y))=e^(3x)dx`
Integration in both the sides, we have
`intdy/e^4y=inte^(3x)dx`
`e^(-4y)/(-4)=e^(3x)/3+C`
We need to find the particular solution.
We have, y=0, when x=0
`1/(-4)=1/3+C`
`=>C=-1/4-1/3`
`=>C=(-3-4)/12=-7/12`
Thus, the solution is `e^(3x)/3+e^(-4y)/4=7/12`
APPEARS IN
RELATED QUESTIONS
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.