Advertisements
Advertisements
Question
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
Options
y = `"e"^x/x + "k"/x`
y = xex + cx
y = xex + k
x = `"e"^y/y + "k"/y`
Solution
The solution of `x ("d"y)/("d"x) + y` = ex is y = `"e"^x/x + "k"/x`.
Explanation:
The given differential equation is `x ("d"y)/("d"x) + y = "e"^x`
⇒ `("d"y)/("d"x) + y/x = "e"^x/x`
Here P = `1/x` and Q = `"e"^x/x`
∴ Integrating factor I.F. = `"e"^(int 1/x "d"x)`
= `"e"^(log |x|)`
= x
So, the solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "k"`
⇒ `y xx x = int "e"^x/x xx x "d"x + "k"`
⇒ `y xx x = int "e"^x "d"x + "k"`
⇒ `y xx x = "e"^x + "k"`
∴ y = `"e"^x/x + "k"/x`
APPEARS IN
RELATED QUESTIONS
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Which of the following differential equations has y = x as one of its particular solution?
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.