Advertisements
Advertisements
Question
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
Options
y secx = tanx + c
y tanx = secx + c
tanx = y tanx + c
x secx = tany + c
Solution
General solution of `("d"y)/("d"x) + ytanx = secx` is y secx = tanx + c.
Explanation:
The given differential equation is `("d"y)/("d"x) + y tan x = secx`
Since, it is a linear differential equation
∴ P = tan x and Q = sec x
Integrating factor I.F. = `"e"^(int Pdx)`
= `"e"^(int tanx "d"x)`
= `"e"^(log secx)`
= sec x
∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`
⇒ `y xx secx = int secx * secx "d"x + "c"`
⇒ `y sec x = int sec^2x "d"x + "c"`
⇒ y secx = tanx + c
APPEARS IN
RELATED QUESTIONS
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
(x3 − 2y3) dx + 3x2 y dy = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The differential equation for which y = acosx + bsinx is a solution, is ______.