हिंदी

General solution of dddydx+ytanx=secx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

General solution of `("d"y)/("d"x) + ytanx = secx` is ______.

विकल्प

  • y secx = tanx + c

  • y tanx = secx + c

  • tanx = y tanx + c

  • x secx = tany + c

MCQ
दीर्घउत्तर

उत्तर

General solution of `("d"y)/("d"x) + ytanx = secx` is y secx = tanx + c.

Explanation:

The given differential equation is `("d"y)/("d"x) + y tan x = secx`

Since, it is a linear differential equation

∴ P = tan x and Q = sec x

Integrating factor I.F. = `"e"^(int Pdx)`

= `"e"^(int tanx  "d"x)`

= `"e"^(log secx)`

= sec x

∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`

⇒ `y xx secx = int secx * secx  "d"x + "c"`

⇒ `y sec x = int sec^2x  "d"x + "c"`

⇒ y secx = tanx + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ २०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 71 | पृष्ठ २०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


y = aemx+ be–mx satisfies which of the following differential equation?


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Which of the following differential equations has `y = x` as one of its particular solution?


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×