English

Solve the Following Differential Equation:- D Y D X − Y = Cos X - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]

Sum

Solution

We have,

\[\frac{dy}{dx} - y = \cos x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = - 1 \]

\[Q = \cos x\]

Now,

\[ I . F . = e^{- 1\int dx} = e^{- x} \]

Solution is given by,

\[y \times I . F . = \int\cos x \times I . F . dx + C\]

\[ \Rightarrow y e^{- x} = \int e^{- x} \cos x dx + C\]

\[ \Rightarrow y e^{- x} = I + C . . . . . \left( 1 \right)\]

Where,

\[ \Rightarrow I = \cos x\int e^{- x} dx - \int\left[ \frac{d}{dx}\left( \cos x \right)\int e^{- x} dx \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} - \int\sin x e^{- x} dx\]

\[ \Rightarrow I = - \cos x e^{- x} - \sin x\int e^{- x} dx + \int\left[ \frac{d}{dx}\left( \sin x \right)\int e^{- x} dx \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} + \sin x e^{- x} - \int\left[ \cos x e^{- x} \right]dx\]

\[ \Rightarrow I = - \cos x e^{- x} + \sin x e^{- x} - I ..........\left[\text{Using (2)} \right]\]

\[ \Rightarrow 2I = - \cos x e^{- x} + \sin x e^{- x} \]

\[ \Rightarrow I = \frac{1}{2}\left( - \cos x + \sin x \right) e^{- x} . . . . . . . . \left( 3 \right)\]

From (1) and (3), we get

\[ \therefore y e^{- x} = \left( \sin x - \cos x \right) e^{- x} + C\]

\[ \Rightarrow y = \frac{1}{2}\left( \sin x - \cos x \right) + C e^x\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.04 | Page 147

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


(x2 + 1) dy + (2y − 1) dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation:  ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solution of differential equation xdy – ydx = 0 represents : ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of differential equation coty dx = xdy is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Which of the following differential equations has `y = x` as one of its particular solution?


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×