Advertisements
Advertisements
Question
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solution
We have,
\[x\frac{dy}{dx} + 2y = x^2 \]
\[ \Rightarrow \frac{dy}{dx} + \frac{2}{x}y = x\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = \frac{2}{x} \]
\[Q = x\]
Now,
\[I . F . = e^{2\int\frac{1}{x}dx} \]
\[ = e^{2\log \left| x \right|} \]
\[ = x^2 \]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y x^2 = \int x^3 dx + C\]
\[ \Rightarrow y x^2 = \frac{x^4}{4} + C\]
\[ \Rightarrow y = \frac{x^2}{4} + C x^{- 2}\]
APPEARS IN
RELATED QUESTIONS
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The number of arbitrary constants in the particular solution of a differential equation of third order is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = e^x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The differential equation for which y = acosx + bsinx is a solution, is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.