English

Find the General Solution of the Differential Equation X Cos ( Y X ) D Y D X = Y Cos ( Y X ) + X . - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]

Solution

\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\]

\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos \left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]

\[\text { This is a homogeneous differential equation } . \]

\[\text { Putting }y = vx and \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]

\[v + x\frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}\]

\[\Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos v}\]

\[ \Rightarrow \cos v dv = \frac{1}{x}dx\]

\[\text { Integrating both sides, we get }\]

\[\int\cos v \ dv = \int\frac{1}{x}dx\]

\[ \Rightarrow \sin v = \log \left| x \right| + \log\left| C \right|\]

\[\text { Putting v }= \frac{y}{x}, we get\]

\[\sin\frac{y}{x} = \log \left| Cx \right|\]

\[\text { which is the general solution of the given differential equation } .\]

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Foreign Set 3

RELATED QUESTIONS

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


If y = etan x+ (log x)tan x then find dy/dx


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


Which of the following differential equations has y = x as one of its particular solution?


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(x2 + 1) dy + (2y − 1) dx = 0


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×