Advertisements
Advertisements
Question
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
Solution
We have,
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]
\[P = - \tan x \]
\[Q = e^x \sec x\]
Now,
\[I . F . = e^{\int - \tan x\ dx} \]
\[ = e^{- \log\left| \left( \sec x \right) \right|} \]
\[ = e^{\log\left| \left( \cos x \right) \right|} \]
\[ = \cos x\]
So, the solution is given by
\[y \cos\ x = \int\left( \cos x\ e^x \sec x \right) dx + C\]
\[ \Rightarrow y \cos\ x = \int e^x dx + C\]
\[ \therefore y \cos\ x = e^x + C\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
If y = etan x+ (log x)tan x then find dy/dx
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The number of arbitrary constants in the general solution of differential equation of fourth order is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(x2 + 1) dy + (2y − 1) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`