English

Find the general solution of the following differential equation :  (1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0 - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`

Solution

Given:

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`

Let tan1y=t

y=tant

`=>dy/dx=sec^2tdt/dx`

Therefore, the equation becomes

(1+tan2t)+(xet)sec2`dt/dx=0`

`=>sec^2t+(x-e^t)(sec^2t)dt/dx=0`

`=>1+(x-e^t)dt/dx=0`

`=>(x-e^t)dt/dx=-1`

`=>x-e^t=dx/dt`

`=>dx/dt+1.x=e^t`

If =e∫1.dt

= et

`:. e^t.(dx/dt+1.x)=e^t.e^t`

 `=>d/dt(xe^t)=e^(2t)`

 Integrating both the sides, we get

`xe^t=inte^(2t)dt`

`=>xe^t=1/2e^(2t)+C " ....(1)"`

Substituting the value of t in (1), we get

`xe^(tan^(1))y=1/2e^(2tan^(-1)y)+C_1`

`=>e^2tan^(-1y)=2xe^(tan^1y)+C`

It is the required general solution.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

RELATED QUESTIONS

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} = \left( x + y \right)^2\]


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×