English

D Y D X = ( X + Y ) 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \left( x + y \right)^2\]

Sum

Solution

We have,

\[\frac{dy}{dx} = \left( x + y \right)^2 . . . . . \left( 1 \right)\]

Let `x + y = v`

\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]

Therefore, (1) becomes

\[ \therefore \frac{dv}{dx} - 1 = v^2 \]

\[ \Rightarrow \frac{dv}{dx} = v^2 + 1\]

\[ \Rightarrow \frac{1}{v^2 + 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{1}{v^2 + 1}dv = \int dx\]

\[ \Rightarrow \tan^{- 1} v = x + C\]

\[ \Rightarrow v = \tan\left( x + C \right)\]

\[ \Rightarrow x + y = \tan\left( x + C \right) \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 35 | Page 146

RELATED QUESTIONS

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The number of arbitrary constants in the particular solution of a differential equation of third order is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×