Advertisements
Advertisements
Question
\[\frac{dy}{dx} + y = 4x\]
Solution
We have,
\[\frac{dy}{dx} + y = 4x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = 1\text{ and }Q = 4x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int dx} \]
\[ = e^x \]
\[\text{Multiplying both sides of (1) by }I . F . = e^x,\text{ we get}\]
\[ e^x \left( \frac{dy}{dx} + y \right) = e^x 4x \]
\[ \Rightarrow e^x \frac{dy}{dx} + e^x y = e^x 4x\]
Integrating both sides with respect to x, we get
\[y e^x = 4\int x e^x dx + C\]
\[ \Rightarrow y e^x = 4x\int e^x dx - 4\int\left[ \frac{d}{dx}\left( x \right)\int e^x dx \right]dx + C\]
\[ \Rightarrow y e^x = 4x e^x - 4\int e^x dx + C\]
\[ \Rightarrow y e^x = 4x e^x - 4 e^x + C\]
\[ \Rightarrow y e^x = 4\left( x - 1 \right) e^x + C\]
\[ \Rightarrow y = 4\left( x - 1 \right) + C e^{- x} \]
\[\text{Hence, }y = 4\left( x - 1 \right) + C e^{- x}\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(x + y − 1) dy = (x + y) dx
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
x2 dy + (x2 − xy + y2) dx = 0
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
y = aemx+ be–mx satisfies which of the following differential equation?
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0