English

D Y D X + Y = 4 X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} + y = 4x\]

Sum

Solution

We have,

\[\frac{dy}{dx} + y = 4x . . . . . \left( 1 \right)\]

Clearly, it is a linear differential equation of the form

\[\frac{dy}{dx} + Py = Q\]

\[\text{where }P = 1\text{ and }Q = 4x\]

\[ \therefore I . F . = e^{\int P\ dx} \]

\[ = e^{\int dx} \]

\[ = e^x \]

\[\text{Multiplying both sides of (1) by }I . F . = e^x,\text{ we get}\]

\[ e^x \left( \frac{dy}{dx} + y \right) = e^x 4x \]

\[ \Rightarrow e^x \frac{dy}{dx} + e^x y = e^x 4x\]

Integrating both sides with respect to x, we get

\[y e^x = 4\int x e^x dx + C\]

\[ \Rightarrow y e^x = 4x\int e^x dx - 4\int\left[ \frac{d}{dx}\left( x \right)\int e^x dx \right]dx + C\]

\[ \Rightarrow y e^x = 4x e^x - 4\int e^x dx + C\]

\[ \Rightarrow y e^x = 4x e^x - 4 e^x + C\]

\[ \Rightarrow y e^x = 4\left( x - 1 \right) e^x + C\]

\[ \Rightarrow y = 4\left( x - 1 \right) + C e^{- x} \]

\[\text{Hence, }y = 4\left( x - 1 \right) + C e^{- x}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 146]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 52 | Page 146

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x + y − 1) dy = (x + y) dx


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


x2 dy + (x2 − xy + y2) dx = 0


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


y = aemx+ be–mx satisfies which of the following differential equation?


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×