Advertisements
Advertisements
Question
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
Options
x + y sin x = C
x + y cos x = C
y + x (sin x + cos x) = C
y sin x = x + C
Solution
y sin x = x + C
We have,
\[\frac{dy}{dx} + y \cot x = cosec x\]
\[\frac{dy}{dx} + y\cot x = cosec x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \cot x \]
\[Q = cosec x\]
Now,
\[I . F . = e^{\int\cot x dx} = e^{log\left( \sin x \right)} \]
\[ = \sin x\]
So, the solution is given by
\[y\sin x = \int\sin x \times\text{ cosec }x dx + C\]
\[ \Rightarrow y \sin x = x + C\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} + y = 4x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.