Advertisements
Advertisements
Question
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solution
We have,
\[x \cos x\frac{dy}{dx} + y \left( x \sin x + \cos x \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} + \left( \tan x + \frac{1}{x} \right)y = \frac{1}{x \cos x}\]
\[\text{Comparing with }\frac{dy}{dx} + Px = Q,\text{ we get}\]
\[P = \tan x + \frac{1}{x} \]
\[Q = \frac{1}{x \cos x}\]
Now,
\[I . F . = e^{\int\left( \tan x + \frac{1}{x} \right) dx} = e^{\log \left| x \sec x \right|} = x \sec x\]
So, the solution is given by
\[xy \sec x = \int \sec^2 x dx + C\]
\[ \Rightarrow xy \sec x = \tan x + C\]
APPEARS IN
RELATED QUESTIONS
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.