Advertisements
Advertisements
Question
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.
Options
cosx
tanx
secx
sinx
Solution
Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is secx.
Explanation:
The given differential equation is
`cos x * ("d"y)/("d"x) + y sinx` = 1
⇒ `("d"y)/("d"x) + sinx/cosx y = 1/cosx`
⇒ `("d"y)/("d"x) + tan x y = secx`
Here, P = tan x and Q = sec x
∴ Integrating factor = `"e"^(int Pdx)`
= `"e"^(int tan x "d"x)`
= `"e"^(log secx)`
= sec x.
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Solve the differential equation `dy/dx -y =e^x`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The number of arbitrary constants in the general solution of differential equation of fourth order is
Which of the following differential equations has y = x as one of its particular solution?
cos (x + y) dy = dx
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.