Advertisements
Advertisements
Question
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Solution
Given differential equation is `log((dy)/(dx)) = ax + by`
⇒ `(dy)/(dx) = e^(ax + by)`
⇒ `(dy)/(dx) = e^(ax).e^(by)`
⇒ `(dy)/(e^(by)) = e^(ax) dx`
⇒ `e^(-by) dy = e^(ax) dx`
On integrating both sides, we get
`inte^(-by)dy = inte^(ax)dx`
`e^(-by)/(-b) = e^(ax)/a + C`
⇒ `e^(ax)/a - e^(-by)/b + C` = 0
RELATED QUESTIONS
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Solve the differential equation `cos^2 x dy/dx` + y = tan x
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} + 1 = e^{x + y}\]
(x3 − 2y3) dx + 3x2 y dy = 0
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.