English

Find the general solution of the differential equation: log(dydx)=ax+by. - Mathematics

Advertisements
Advertisements

Question

Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.

Sum

Solution

Given differential equation is `log((dy)/(dx)) = ax + by`

⇒ `(dy)/(dx) = e^(ax  +  by)`

⇒ `(dy)/(dx) = e^(ax).e^(by)`

⇒ `(dy)/(e^(by)) = e^(ax) dx`

⇒ `e^(-by) dy = e^(ax) dx`

On integrating both sides, we get

`inte^(-by)dy = inte^(ax)dx`

`e^(-by)/(-b) = e^(ax)/a + C`

⇒ `e^(ax)/a - e^(-by)/b + C` = 0

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Outside Delhi Set 2

RELATED QUESTIONS

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Solve the differential equation `cos^2 x dy/dx` + y = tan x


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + 1 = e^{x + y}\]


(x3 − 2y3) dx + 3x2 y dy = 0


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×