English

Solve the Differential Equation Cos^2 X Dy/Dx + Y = Tan X - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the differential equation `cos^2 x dy/dx` + y = tan x

Sum

Solution

`cos^2 x dy/dx` + y = tan x

∴ `dy/dx + y/(cos^2x) = tanx/(cos^2x)`

∴ `dy/dx + sec^2x.y` = tan x . sec2 x

The given equation is of the form

`dy/dx + Py` = Q,

Where P = sec2 x and Q = tan x. sec2 x

∴ I.F. = `e^(int Pdx) = e^(intsec^2x  dx)` = etan x

∴ Solution of the given equation is

y(I.F.) = `int Q.(I.F.)dx + c`

∴ yetan x = `int tan x.sec^2x.e^(tanx)dx+ c`

Put tan x = t

∴  sec2x dx = dt

∴  yetan x = `int te^t dt + c`

= `tint e^t dt - int[d/dt (t) inte^tdt]dt + c`

= `te^t - int e^tdt + c`

= tet – et + c

∴ yetan x = etanx (tanx – 1) + c

∴ y = tan x – 1 + c.e–tanx

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (October)

RELATED QUESTIONS

If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


cos (x + y) dy = dx


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x2 + 1) dy + (2y − 1) dx = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


(x3 − 2y3) dx + 3x2 y dy = 0


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of differential equation coty dx = xdy is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×