English

If 1-x2 +1-y2 = a(x − y), show that dy/dx = 1-y21-x2 - Mathematics and Statistics

Advertisements
Advertisements

Question

If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`

Sum

Solution

Given, `sqrt(1 - x^2) + sqrt(1 - y^2) = a(x - y)`

Put x = sin θ and y = sin Φ

θ = sin−1 x and Φ = sin−1 y

Now, `sqrt(1 - sin^2 θ) + sqrt(1 − sin^2 "Φ") = a (sin θ − sin "Φ")`

cos θ + cos Φ = a(sin θ − sin Φ)

2 cos `((θ + "Φ")/2) cos ((θ − "Φ")/2) = 2a cos ((θ + "Φ")/2). sin ((θ − "Φ")/2)`

`therefore cos((θ − "Φ")/2)/sin ((θ − "Φ")/2) = a`

`therefore cot ((θ − "Φ")/2) = a`

`therefore (θ − "Φ")/2 = cot^-1 a`

∴ θ − Φ = 2 cot−1 a

∴ sin−1 x − sin−1 y = 2 cot−1 a

Differentiating w.r.t. x, we get 

`1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) (dy)/(dx) = 0`

`(dy)/(dx) = sqrt((1 - y^2)/(1 - x^2))`

Hence Proved

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Delhi Set - 1

RELATED QUESTIONS

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


Find the approximate value of tan−1 (1.001).


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×