Advertisements
Advertisements
Question
If x = a sin3 θ, y = b cos3 θ, then find `(d^2y)/dx^2` at θ = `(pi)/4`.
Sum
Solution
Given, x = a sin3 θ and y = a cos3 θ
`(dx)/(dθ) = 3a sin^2 θ cos θ`
and `(dy)/(dθ) = -3a cos^2 θ sin θ`
∴ `(dy)/(dx) = (-3a cos^2 θ sin θ)/(3a sin^2 θ cos θ)`
= −cot θ
and `(d^2y)/(dx^2) = d/(dθ) (-cot θ) (dθ)/(dx)`
= cosec2 θ `1/(3a sin^2 θ cos θ)`
= `1/(3a sin^4 θ cos θ)`
Now, `(d^2y)/(dx^2)|_(at x = (pi)/4) = 1/(3.a(1/sqrt2)^4 . 1/sqrt2)`
= `1/(3.a 1/4 . 1/sqrt2)`
= `(4sqrt2)/(3a)`
shaalaa.com
Is there an error in this question or solution?