English

Find : d/dx cos^−1 ((x−x^(−1))/(x+x^(−1))) - Mathematics

Advertisements
Advertisements

Question

Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`

Solution

`y= d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`

`= d/dx cos^−1 ((x^2−1)/(x^2+1))`

`Let x=tanθ`

`∴y=cos^(−1) ((tan^2θ−1)/(tan^2θ+1))`

`=cos^(-1)(-(1-tan^2theta)/(1+tan^2theta))`

`=pi - cos^(-1) (cos 2theta) [cos^(-1)(-x)=pi- cos^(-1)x]`

`=π−2θ`

`=π−2tan^(−1)x`

Differentiating both sides w.r.t. x, we have

`dy/dx=0-2xx1/(1+x^2)`

`therefore d/dx cos^-1 ((x-x^(-1))/(x+x^(-1)))=-2/(1+x^2)`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

RELATED QUESTIONS

If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×