Advertisements
Advertisements
Question
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
Solution
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
f1(x) f2(x)
`Let f_1(x)=cos^−1 [sin sqrt((1+x)/2)] and f_2(x)=x^x`
Now,
`f_1(x)=cos^−1 [sin sqrt((1+x)/2)]`
`= f_1(x)=cos^−1 [cos(pi/2- sqrt((1+x)/2))]`
`=pi/2- sqrt((1+x)/2)`
`⇒f_1'(x)=−1/2sqrt(2/(1+x))=−sqrt(1/(2(1+x)))`
and
`f_2(x)=x^x` Taking log on both sides, we get
`log f_2(x)=xlogx`
`⇒1/(f_2(x)) f2′(x)=logx+x⋅1/x`
`=>1/(f_2(x)) f2′(x)=logx+1`
`=>f2′(x)=f_2(x)(logx+1)`
`=>f2′(x)=x^x(logx+1)`
`∵f(x)=f_1(x)+f_2(x)`
`∵f'(x)=f_1'(x)+f_2'(x)`
`=-sqrt(1/(2(1+x)))+x^x (logx+1)`
At x=1
`f'(1)=-sqrt(1/(2(1+1)))1^1(log1+1)`
`=-1/2+1=1/2`
APPEARS IN
RELATED QUESTIONS
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`
(a) y
(b) x
(c) y/x
(d) 0
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Solve `cos^(-1)(sin cos^(-1)x) = pi/2`
Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).
If y = (sec-1 x )2 , x > 0, show that
`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.